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Abstract. In the particular case of the asymmetric X Y model an explicit form for the operator 
corresponding to Baxter’s quantum number n is obtained. It is shown that this operator is 
closely associated with a transformation of spin operators which converts the asymmetric 
X Y hamiltonian into a symmetric X Y hamiltonian with alternating nearest-neighbour in- 
teractions. 

1. Introduction 

In its simplest form the X Y  model in one dimension consists of a chain of spins one-half 
interacting by nearest-neighbour forces described by the simple hamiltonian 

N 
Pxr = -$ 1 [(l+k)aj”~j”+l+(l-k)ajY~j+l], 

j =  1 

where the aj are Pauli matrices with periodic boundary conditions aj+N = a j .  This 
model has a well known algebraic solution (Lieb et a1 1961, Katsura 1962) in terms of 
fermion quasi-particle operators. The model happily arises also as one of the simplest 
limiting cases (Jones 1973) of Baxter’s solution of the general X Y Z  model (Baxter 1972, 
1973a, b, c). The solution due to Baxter is characterized by a new integer-valued 
quantum number which is different from the total fermion number in the usual solution 
of this model. In our previous study of the model we achieved an algebraic form of 
Baxter’s solution but were unable to find the operator corresponding to his new quantum 
number. In the present work we will show that by a slightly different choice of the 
Baxter basis states we can explicitly write down this operator. Further, we find a spin 
transformation which, apart from end effects, turns the asymmetric X Y  model into a 
symmetric X Y model in which the nearest-neighbour interaction strength alternates 
along the chain of spins. 

Thus in 5 2 we describe the change in the basis states of our earlier work and construct 
the Baxter ‘spin’ operator R, .  In 5 3 we define a transformation from a-spin to p-spin 
and re-express both and R, .  In 5 4 we briefly indicate the connection with the 
familiar solution in terms of fermion quasi-particles. Throughout we will use notation 
borrowed either from Baxter’s work or from our earlier work on the X Y model and the 
reader is rcferred there for fuller explanation. 

2. The Baxter quantum number 

Baxter’s diagonalization of the eight-vertex model transfer matrix (Baxter 1973a, b, c) 
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utilizes remarkable families of vectors characterized by a number n of down ‘spins’ 
where Baxter’s ‘spins’ are defined as being either ‘up’ or ‘down’ with respect to an axis 
that rotates from site to site along the spin chain. Normalized spinors on each site may 
be constructed in terms of a function p(1, s) where 1 is an integer that varies from site to 
site and s is a free parameter. In our earlier study of the X Y  model (Jones 1973), we used 
a form of p(1, s) which had the advantage of giving real basis spinors which were linearly 
independent in the regime defined by 0 c k < 1 but the disadvantage that when k = 0 
the basis states used ceased to be linearly independent. If we modify the choice of p(1, s) 
so that the basis spinors are no longer real, we can then obtain an orthonormal basis 
for the X Y  model which remains orthonormal at k = 0 and there coincides with the 
states of the X X Z  model also studied earlier (Jones 1974). 

Thus our new choice for p(1, s) is 

p(1, s) = $ sn(s + K + 211 - iiK‘), (2.lu) 

where sn in the Jacobi elliptic function of modulus k, K and K‘ are the complete elliptic 
integrals of the first kind of modulus k and complementary modulus k = (1-k2)lI2 
respectively, 1 is an integer, s is a real parameter, and 1 is of the form (Baxter 1973a) 

(2.lb) 

with m, , L integers. After expressing sn in terms ofjacobian theta functions, it is straight- 
forward to show that 

lim p(1, s) = exp[i(s+ 211)], (2.2) 
k - 0  

where exp[i(s+21q)] is the form of p(1, s) appropriate to the X X Z  model (Jones 1974). 
By using the behaviour of sn under translation of its argument by iK’ together with its 
real analyticity and its addition theorem, one may establish that 

where 
cn(s + K + 211) dn(s + K + 211) 

(1 + k) sn(s + K + 211) 
tan 6(1, s) = - (2 .3~)  

Since p(1, s) is now a complex number of modulus one, we choose the basic ‘up’ spinor 
at si tej  to be 

and the ‘down’ spinor to be 

(2 .4~)  

(2.4b) 

We specialize to the X Y  model by taking L = 4, m, = 1 in (2.lb) to give 21 = K .  
With this value of q one may easily show that 

tan 6(1, s) tan 6(1+ 1, s) = - - (: ;:)3 

(2.51) 
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and 

6(1+2,s) = 6(1,s)+z. (2.5b) 

For most values of s, S(1, s) depends on the magnitude of the asymmetry parameter k. 
However, i f s  is an integer multiple of K, then the phase 6 becomes independent of k. 
Thus later we will set s = 0 to simplify our manipulations, for with s = 0 we find the 
simple result 

d(1,O) = ilz, ( 2 5 )  

valid for all values of k. This does not contradict the relation (2.52) if the left-hand side 
of that equation is treated carefully in taking the limit s -+ 0. 

If we now form suitable direct products of the spinors (2.4u, b), we obtain the Baxter 
basis states 

( 2 . 6 ~ )  $(l1, . . . 7 I N ,  IN+1) = 611,1~@~12,1~@ . . . @61N,IN, 
where the integers I j  are constrained by 

lj+l = lj*1, 

1,+ /,(mod L). 

(2.6b) 

(2 .6~)  

These states may also be written 

$(I1 9 1 2 , .  . . ,  1 N ,  IN+ 1) = $ ( l ;  xi 9 . . . ,  xn) (2.6d) 

where 1 = 1 ,  and x1 < x2 < . . . < x, label spin sites along the chain at which a 'down' 
spinor occurs in the product defining $ ( I ;  xl,. . . , x,). For the XY model ( L  = 4), 
$(1 + 4 ;  xl,. . . , x,) = $(1 ;  xl,. . . , x,) giving basis states for 1 = 1,2,3,4. The number n 
of 'down' spinors is constrained by 

n 3 iN(mod$), (2.7) 
where we are now assuming the total number of spin sites N to  be even. Thus in the 
X Y  model ( L  = 4) n takes either even or odd integer values depending upon whether 
N is divisible by four or only by two. As shown earlier (Jones 1973) a complete set of 
states is obtained by taking $(1 ;  xl,. . . , x,) and $ ( I +  2 ;  xl,. . . , x,) for all allowed values 
of n and all choices of x1 < x2 < . . . < x,. These states are normalized so that 

( $ ( 1 ;  ~ 1 3  . . ,  Xn), $ ( l ;  ~1 3 . . t  Ym)) = dnmdxl,yldxl,y2 . . . d x n , y n '  ( 2 . 8 ~ )  
and 

($(l;x1, . . . ,  x,),$(1+2;Yl,..',ym))= 0. (2.8b) 

In our earlier study using real basis vectors the scalar product (2.8b) did not vanish in all 
instances. With our new choice of p(1, s) the scalar products (2.8u, b) are independent of k 
and we thus obtain a complete orthonormal basis for all values of k. 

Let us specialize even further by using as a basis the states $(1 ;  xl, . . . , x,) in which 1 
is an odd integer ( I  = 1,3). With this choice and noting the constraints (2.6b, c) we 
observe that 

l j  j(mod 2), ( 2 . 9 ~ )  

and hence 

d l j ,  s) = * ~ ( j ,  s), (2.9b) 
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where the upper sign holds if l j  
this observation in mind, define an operator on the jth site by 

jlmod 4) and the lower sign if lj $ j(mod 4). Keeping 

uj(s) = cos 6( j, s)aJ -sin 6( j, s)a;, 

Using (2.4), (2.9b) and (2.10) one sees that 

uj(s)4fJ,fJ+ 1 = *4f , , fJ+ 1 5  

Uj(s)4lJ,fJ- 1 = f 41J,fJ- 1 9  

(2.10) 

(2.1 1) 

where again the upper sign in (2.1 1) is to be taken if l j  = j(mod 4) and the lower sign 
otherwise. Finally, from (2.1 1) we can compute that 

(2.13a) 

we have that for odd integer values of 1% 

Rz(s)$(l; x l , .  . . , x,) = ( i N  -n)$(l; x l , .  . . , x,), (2.13 b) 

It is tedious but straightforward to check that R,(s) commutes with .f.yy for any value of 
the parameter s. The method of proof is to show that there is an operator Oj(s)  such that 

(2.14) C X x Y ,  U j ( s ) U j +  l(s)I = Oj+ l ( s ) -Oj ( s ) ,  

from which one obtains at once 
N 

[xxy, Rz(s)I = (Oj+ l(s)-Oj(s)) = 0, 
j =  1 

since ON+ l(s) = O,(s). In view of the result ( 2 . 5 ~ )  a very simple form of the operator 
R,(s) arises if we set the parameter s equal to zero, 

R, = R,(O) =  go);^; -O;a< +aSOf -O ia :  + . . . -a%~:). (2.15) 

3. a-p spin transformation 

In this section we use the aj spin operators to construct a new set of spin operators pj .  
This transformation, apart from end effects, changes the asymmetric X Y hamiltonian 
in terms of a spin into a symmetric but alternating X Y  hamiltonian in terms of p spin. 
At the same time the operator R, above appears as essentially the total z component of 
p spin. 
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We may define a set of independent spin operators pj, j = 1,2,. . . , N ,  which satisfy 
the same algebra as do Pauli matrices by the following equations : 

p; = oz,ax,, 

P’r = o:d;, 

P : =  6, (3 .1~)  

for jodd ,3  < j  < N-I ,  
p’ = -(  - i)(j- 1)/20xozgz 1 2 3 . .  . of-la;o;+ 1 ,  

,,j’ = ( -1) ( j -1) /20xazoz  1 2  3 . . . q j z ,  

1 

(3.lb) 
pf = (JY& 

1 J + 1 ’  

for j even, 2 < j < N ,  ,,; = ( -  i)(j-- 2)/20xozoz 
1 2  3 . . . o f ,  

pj  = (-I)(]- 2)12#ozoz 1 2 3 . .  . o;-loj’og+l, 

pf = -oxay 
J j t l i  

and finally 

p i  = i( - 1)N’20:U, 

PK = a i ,  

pk = - ( -  1)”2o;[lo: U ,  

where the operator U is defined by 

U = o;o;. . . a”. 

U = p’rp; . . . p t .  

of = p{ 

o: = -i( - 1)N/2p”,, 

o’r = - (- l)N/2p”N{ U ,  

One may check from the definition of the pf that we also have 

The inverse transformation is given by 

for jodd,  3 < j < N-I,  
,,; = (- l ) ( N - j - l ) / z  x Pj- 1P;Pf+ I P ~ +  2 * . * PZN- 1 P Y N ,  

PjPj+ 1 * * . P k -  I P Y N ,  = ( -  1)W-j -  1)/2 z z 

o? = -p’ J - l P s ,  

a;= ( - 1 ) ” - j ) / 2 p f p f +  l...pZN-lpK, 

of = pj’-lp;, 

J 

for j even, 2 < j < N ,  

oj’ = - ( - 1 ) W - N z  Y P ~ - I P ~ P ~ + I P ~ + ~  ...P;Y-lPyN, 

(3 .k)  

(3.ld) 

(3 .2~)  

(3.2b) 

(3.34 

(3.3b) 

(3.34 
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and finally, 

(3.3d) 

In addition R, becomes simply 
N -  1 

R, = 1 ~ f + % - l ) " ~ p ' , U .  
j =  1 

Using (3.4) and (3.5) it is simple to check again that [HXy, R,] = 0. 

(3.5) 

4. Alternating X Y  model 

The one-dimensional alternating Heisenberg chain has been studied in some detail 
before (Abraham 1969, Brooks Harris 1973). For the even simpler alternating X Y model 
we may diagonalize the hamiltonian explicitly in terms of free fermion quasi-particle 
operators. Let us briefly sketch this diagonalization in order to indicate how it compares 
with the fermion quasi-particle diagonalization of the original asymmetric X Y hamil- 
tonian in terms of 0 spin operators. Defining the projection operators 

P, = %1&U), (4.1 ) 

z x y  = .Hx+yP+ +HX,P-.  (4.2) 

we may write 

Let us assume N is divisible by four so that ( -  1)"' = 1 ,  and then let us look in detail 
at X i y  where no end effects complicate the diagonalization. In these circumstances we 
have 

N 

XX'Y = -a 1 (1+( -1Y 'k ) (P ;PJ+ l+P;Pq+ l ) ,  (4.3) 
j =  1 

with pN+ = p l .  Make a Jordan-Wigner transformation to  fermion operators by 

where dN+ = -d, . Introduce the Fourier transform of these operators by 
N 

where the wavenumbers q satisfy 

(4.5a) 
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or 

1r 31r 
q =  f- +-,..., f N ' - N  

(4.5c) 

We then obtain 

x ; Y  = c [cos dPL,tP, - PL,t- nP, - n) - ik sin 4(PL,tP, - n - P,t- .P,)l. (4.6) 

Introduce fermion quasi-particle operators [, by a Bogoliubov-Valatin transformation 
(Bogoliubov 1958, Valatin 1958) for q > 0, 

where the angle y 4  is defined by 

COS yq = COS q/E,, 

sin y, = k sin q/E,, 

and 

(4.7) 

( 4 . 8 ~ )  

(4.8b) 

E,  = (cos'qf k' sin")'''. (4 .8~)  

In the present case we will choose E ,  to be the positive square root for 141 < 4. and the 
negative square root for 141 > in.  This choice is made in order that in the limit k -, 0 
all results go smoothly to those for the symmetric X Y  model. One should note that this 
choice differs from that in our earlier analysis (Jones 1973). After the transformation 
(4.7) the hamiltonian takes the diagonal form 

where the summation is over the allowed q values (4 .5~) .  
We may compare this result with the more usual fermion quasi-particle diagonaliza- 

tion of H i y  in terms of 0 spin. In that procedure one makes a Jordan-Wigner trans- 
formation from the r~ spin operators to fermion operators c j  and their Fourier transforms 
qq with the same wavenumbers q as in (4 .5~) .  Again introduce quasi-particle operators 
4, by 

where q > 0 and the angle y, is the same as in (4.8u, b). One then finds 

x;y = E,',tt,. 
4 

(4.10) 

(4.1 1 )  

In order to see clearly the link between these two different fermion representations 
let us recall from our previous work (Jones 1973) that we introduced anticommuting 
hermitian operators u j  and bj which were related to the real and imaginary parts of the cj, 

(4.12) 
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Using these operators one may check that 

,-f = $ e-'("/2)j(b.-iaj), J (4 .13~)  

while 

dt  1 2  = Le-i("/2)j(a.-ib. J J + 1  ). (4.13b) 

If one inserts (4.13a, b) in the Fourier transforms and then utilizes the definitions (4.7) 
and (4.10) of the quasi-particle transformations, one can derive the following connection 
between the i, and 5,  operators : 

(4.14a) 

(4.146) 

Finally we note that the operator R, may be expressed in terms of these fermion 

i,t = $[(e-iq + i)<,t + (e-iq - i)tn-ql, 

<J = f[ (e'q - i)c,t - (e'q + i)ln-J. 

operators by 

(4.15a) 

and 

5. Discussion 

The a-p spin transformation of 5 3 is important here because it gives a physical picture 
of the Baxter quantum number as essentially the total z component of spin in an alterna- 
ting X Y  model. However, this spin transformation may be of interest in connection 
with other problems. For example, if we apply the a-p transformation to the X Y Z  
hamiltonian, 

N 

XxYz = - 1 [( 1 + r)ap;+ + (1  - r)afoj+ + Aafa?, 1], (5.1) 
j =  1 

we obtain 
N/2 x x u  PNP2 X X Y Z  = ~ A ( p ~ p ~ + p ~ p ~ +  . . .  +p$-2p;+(-1) 

+ $A(p:pY, + p:pY, + . . . + pyN- 3pyN- 1 + ( -  1)N'2pG- 1 ~ :  U )  
N -  2 

-a 1 (l+(-lY'r)(pSpi"+,+prpr+l) 
j =  1 

N / 2  x x u  - ~ 1 - r ) ( p " , l ~ ~ + ( - 1 ) N ' 2 p ~ - I p y N U ) - K 1 + r ) ( ( - 1 )  PNPl +p;p:), 
(5 .2)  

which shows that the X Y Z  a spin model is equivalent to a pair of coupled p spin Ising 
chains, one chain defined on the odd lattice sites, the other chain defined on the even 
lattice sites, and the coupling between them of alternating strength (1 +( - 1)T). 

Section 2 raises an interesting question because there we obtain the Baxter operator 
in s dependent form, R,(s). The s dependence of R,(s), of course, reflects the s dependence 
of Baxter's basis vectors. In a study of the X X Z  model (Jones 1974) we found that the 
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parameter s there reflected the existence of a conserved quantity different from Baxter's 
quantum number. We conjectured that this situation might hold in the general X Y Z  
model. However, in order to test this idea in the X Y  model it is not sufficient to know 
the form of R,(s) alone. Rather, using our altered definition of the basis states (2.14 one 
must construct eigenstates Y(s) of SX, following our earlier method (Jones 1973). 
Then the question becomes does there exist an operator V(s)  such that 

W) = V(W'(O), (5.3) 

R,(s) = V(s)R,(O)V- 1(s). (5.4) 

Such an operator V(s)  would enable us to define an s dependent a-p spin transformation. 
The most important problem remaining is of course to find the operator form of the 

Baxter quantum number for the X Y Z  and eight-vertex models. It would be intriguing 
if such an operator were again associated with a spin transformation converting Xxuz 
into a spin hamiltonian which is partially symmetric but with nearest-neighbour inter- 
actions that vary from site to site. 
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